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• Preface

This study has been a very inteiesting and useful

learning experience, and I wish to convey my appreciation

to the Air Force Institute of Technology for requiring it

and to the Air Force Avionics Laboratory for the subject

matter . I found that not only is coherent combination of

lasers a formidable engineering task, it is equally as diffi-

cult to model the problem on paper . This is in part because

of the cross talk between the discIplines of Electrical

Engineering and Laser Physics , but the effort broadened

(pressure broadening I believe) my understanding considerably.

I had hoped to be able to consider many more applica-

tions and in much greater detail, but there was, as usual,

no time. I believe the results , however , to be significant,

particularly in the array section where it was found that a

very large number of lasers is needed to eliminate multiple

lobes in the far field combined beam pattern . It was also

found that, given a good phase locked loop , there are few

major impediments to implementing a system of coherently

combined lasers. This in itself is a useful result. There

are however, many more questions to be answered , and I hope

• that this study can be a useful starting point for further

efforts. •

I want to express a great deal of thanks to my advisor,

Dr. Stan Robinson, for his stimulating discussions. His .

expertise and understanding of the subject were invaluable.
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I also want to thank my readers Dr. Ted Luke and Dr. Don

Shankland for their very helpful comments. Last, but not

least, I wish to thank my typists , Mrs. Karen Landis and

Mrs. Rusti Gaudreau, who , .though they are still probably

wondering about all those funny little symbols , typed this

report with great skill and care.

- Hal E. Hagemeier

December 1977
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Definition of Symbols

A Field amplitude , sometimes indexed , always
deterministic -

a, b Real and imaginary parts of ~
• B Power ratio of threshold level to theoretical

average side lobe level -

D, d Element spacings in an array , sometimes indexed ,
may be deterministic or random

E Energy of signal s(t) 
-

•

~~ y( 
) Two dimensional Fourier transform on the variables

x,y 
-

f~ Frequency offset of ith laser

Constant frequency offset

Optical frequency

Scan frequency (rate)

g Scale factor for linear frequency modulation

• 

- 
h Peak spatial side lobe level with respect to the

main beam

k Propagation constant, ~i (k is sometimes usedas an index) A

L Length of laser array

• in Number of pulses

• •~ n Array parameter

N Number of lasers

N0 Twice the height of the power spectral density
• of white noise

oj Misalignment angle of optic axis for the ith laser

• P(x1,y 1) Phase factor from the Huygens-Fresnel principle

q Logarithm (base 10) of L in wavelengths

Complex radius of curvature of gaussian spherical
wave
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r Scale factor that determines the size of the scan
sector

R Radius of curvature of the phase front of a
gaussian spherical wave

R(’t) Correlation of a random process , may be subscripted
to indicate the particular process

• 8(t) Signal of interest

S(f) Fourier transform of s(t)

t~ Temporal null-to-null pulse width

Temporal pulse recurrence interval

Tc Coherence time of ~~t)

U0 Field at output of laser

U0~ Spatial part of U0

•U1 Field at z1

U15 Spatial part of U1

w Spot size of gaussian spherical wave

w1 Spot size at z1

Xp Spatial null-to-null pulse width

Xp Spatial- period

z Argument for z transforms

z1 Distance beam propagates in z direction (no rela-
tion to z transforms)

• Ux,tty Phase angles

Confidence level of B

y RMS bandwidth of s(t)

.5 ENS duration of s(t) (no relation to the Dirac
delta function)

c • Difference between random variable and its mean

Beam angle in plane of array

Attenuation due to a
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0 Phase angle, sometimes indexed, always deter-
ministic

A Wavelength 
. 

-

v Doppler shift (frequency)

a2 Variance of a random quantity which is determined
• by a subscript , may be indexed

Time difference, t -

4(t) Phase angle, always a random process , sometimes
indexed

Characteristic function , sometimes subscripte.~i

x Ambiguity function (a two dimensional correlation)

Angle off of array normal -

w Angular frequency
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Abstract

The coherent combination of several, single mode lasers

can produce a field similar to that of a mode-locked laser

but with more flexibility . The field for a quasi-monochro-

matic wave is considered a complex, coherence separable

random process. The ensemble mean and covariance are deter-

• mined for the case of a temporally stabilized amplitude and

a temporal phase that with the appropriate assumptions is a

- stationary , gaussian random process. Mean fields are used

throughout as the “signals1’ of interest. The Huygens-Fresnel

principle is used to investigate the field properties in the
• Fraunhofer region for two cases. The first case is for N

beams superimposed with optical axes coincident. With appro-

priate assumptions , the performance of such a system is

determined from- the ambiguity function. Range measurement

• precision is found to be proportional to ~~~~~~~~ where L~f is

• the frequency difference between adjacent lasers. Velocity

measurement precision is found to be proportional to v’N~ f3 .

The second case is for N beams in a linear array . The far

- t field result is a scanning beam that in certain cases can

be steered. Aperiodic arrays are considered in an effort to

• reduce grating lobes. An array of about 1000 lasers is

• needed for reasonably low side lobes.

- Some generalized results are presented for the effects

• of misalignment of the lasers . In addition , the effects of

the random phases of the lasers are considered , and the time-

• space dual nature of the results is discussed. 
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FIELD PROPERTIES OF MULTIPLE,

COHERENTLY COMBINED LASERS

I. Introduction -

The uses of laser systems in industry , medicine , th

scientific community , and the military have been growit~
steadily in the past few years. Many applications have uti-

lized lasers that are scanned or pointed, have high peak

powers, and are modulated. The military , for example, is

developing lasers for possible use in ranging systems , target

designators , terrain mapping systems , and fire control sys-

tems. One of the types of laser used belongs to the general-

class of mode-locked lasers.

Background

Mode-locking of an inhomogeneously broadened laser is

often done in applications that require very short pulses

and high peak powers. An inhomogeneously broadened laser

typically oscillates at several longitudinal modes. The

modes are at - frequencies that are separated by an amount

that is inversely proportional to the length of the cavity

• (Ref 33:348-352,365). Generally , these modes have random

phases with respect to each other (relative phases) and the

resultant total laser output power is proportional to the

number of modes. If, however, the individual modes maintain

a constant relative phase, the laser output power is

.1 
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periodic with a period proportional to the cavity length, and

the output peak power is now proportional to the square of

the number of modes (Ref 39:256-262).- -

Unfortunately, since the pulse properties of the mode-

locked laser are determined essentially by the cavity length,

variations in pulse format are not easily accomplished. To

- 

- obtain more flexibility , it seems reasonable to consider

• combining the outputs of several, single mode lasers. In

this case, the phase , frequency , and amplitude of each laser

can be chosen to synthesize desirable combined beam proper-

L • 

ties. If the frequency difference between any two lasers is

an integer multiple of a constant frequency offset and if

the fields are combined coherently , the result duplicates the

output of a mode-locked laser. Now, however, the frequency

offset can be varied over a much larger range than possible

• with a mode-locked laser so that the pulse properties of the

combined beam can be chosen to meet more diverse require-

ments. The number of beams that are combined can also be

varied to change the output pulse width and amplitude. In

addition , the lasers could be separated in space , i.e. placed

-
. 

- 

in an array of some sort, so that spatial pulse properties

exist analagous to the temporal properties of the mode-

locked laser. -

Analysis of the coherent combination problem has been

• lai?gely experimental and based only on deterministic models

• of the individual laser outputs (Ref 1, 16, 17, 41). There

has also been some speculation on the applicability of a

2
• a
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“phased array” of lasers (Ref 7). Although these are neces-

sary first steps , a more complete analytical approach which

considers the instabilities of the various lasers and exam-

ines the resulting electromagnetic field distribution in

the far field is needed.

Problem - 
-

This study will focus on two of the many aspects of

this problem . First , the laser outputs will be modeled as

stochastic processes , and the space-time electric field

distribution of the far field will be determined. Second ,

performance criteria for potential applications will be

determined and related not only to the characteristics of

the lasers (such as frequency , phase , and spatial location),

but also to the total number of lasers. The purpose of the

study is to examine the effects of practical quantities

such as coherence time , phase instabilities, number of

lasers , and position inaccuracies on the far field beam pat-

tern and to determine from a systems standpoint what types

— of signals can then be synthesized.

- Scope and Assumptions

Although most of the calculations (except for specific

numerical examples) will be generally applicable to any

single mode laser, the underlying application will be for

carbon dioxide (C02) lasers. In particular , the waveguide

CO2 laser possesses certain desirable characteristics (Ref

9): it is homogeneously broadened and therefore oscillates

- 3 . 
•
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at one frequency ; it is tuneable over a large frequency

bandwidth ; as a CO2 laser, it has a relatively long wave-

• 
length; and there is a convenient atmospheric “window” at

the CO2 wavelength of 10.6 microns . For simplicity, scalar

fields will be used instead of vector fields , and the field

descriptions will be classical (such as the treatments found

in Ref 12:37-50; 14:11-26; and 4:10-36). Furthermore, the

Huygens-Fresnel principle will be used to determine the far

field patterns (Ref 4:370-375; 12:33-70), and a perfect

channel (i.e. free space) wil1~be assumed for propagation .

No attempt will be made to consider the problems of actually

combining , phase locking , or controlling the phases of the

individual beams as these topics are addressed in a related

study.

The desired result is a f irst  and second moment descrip-

tion of the field as a random process. The ensemble mean

and covariance -of the field will be considered as functions

of time and space. The mean of the field will be used as

the “signal” of interest for determining performance cri-

teria and other results. The covariance will be a measure

• of how closely the actual results will approach the mean

results and is similar to the mutual coherence functions

described by other authors (Ref 4:499-518; 3:765 ; 21:235-

242; 27:359-399 ; 29:784-789).

- 
• Signal detection and estimation will not be addressed

in detail;  desirable signal formats will be those which pro-

duce workable patterns within the constraints of the

4
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stochastic far field model . One measure of performance will

be the ambiguity function (Ref 6:59-105; 31:70-75) from which

the Cramer-Rao lower bounds on a given signal’s measurement

precision of range and velocity can be determined . Another

performance measure will be the beam quality as a function

of laser position and phase variations. In addition , the

far field beam pattern itself as a function of various t ime

and space conditions will be -an indication of the desira-

bility of those conditions for certain applications .

Approach

The study is divided into three sections . The f i rs t

section presents a statistical model of the individual laser

modes . They are considered to be complex , coherence separ-

able processes whose real and imaginary parts are identically

distributed. For practical cases , the mode amplitudes are

considered deterministic , and the randomness (laser insta-

bilities) appears in the phase of each beam. The duality of

t ime and space variations is shown as a general case when

several beams are combined. Far field results are deter-

mined and the effects of physical limitations are studied.

Finally , two general classes of combined beams are consid-

ered : the coaxial case, and the side-by-side array case.

The means and covariances are determined for both cases ,

ansi some characteristics of the mean s are examined.

The second section considers the coaxial case in more

detail. Coherent detection and a matched filter receiver

are assumed , and the amb iguity function of the combined

• 5
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field mean is determined. This shows explicitly the depend-

ence of the measurement precision of the signal as a function

of the number of lasers, the frequency differences between

lasers , and the relative phases of the lasers. Potential

applications for rang ing , velocity measurement , and both are

considered in light of the performance criteria.

The third section presents analytical results for var-

ious linear arrays. The scanning characteristics of the

combined beam in the far field are studied. Pattern synthe-

sis and other beam properties are related to the number of 
-

lasers and their position. In addition , aperiodic arrays

- -~ and the statistics of random arrays are included in an

attempt to reduce high side lobes.

6 
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II. - Field- Models

The optical fields used here will be described

classically. Most generally,  the field for a monochromatic

linearly polarized wave may be written as 
-

u(x,y,z, t) = A(x,y,z,t)cos(2~rf 0 t-4 (x,y,z,t))

where u(x,y,z,t) is a scalar function representing either an

electric or a magnetic field at position x, y, and z, and

time t; A is the amplitude of the wave; 4 is the phase; and

is the optical frequency . Typically, u is written

u(x,y,z,t) = Re (U (x ,y , z , t) exp(-j2 ’ir f 0 t ))

where Re means “the real part of” and U(x,y,z,t) is a complex

function called the complex envelope of u(x,y,z,t), where

U(x,y,z,t) = A(x,y,z,t)exp (j~~(x,y,z,t))

It is assumed -that U is a complex random process whose real

and imaginary parts are identically distributed and that z

is the direction of propagation . The field , then, at any z

is a function of x , y, and t and is designated by a numerical

subscript on U, for example

U(x , y, z0,t) = U0(x,y,t)

Output Field Model

U can now be written -

U(x,y,t) = A(x,y,t)éxp(j4(x,y,t))

7 



r’~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where the amplitude and phase are slowly varying random

functions of time and space . For a single mode laser , the

amplitude is usually considered spatially coherent for a

given z and separable (Ref 3:768 , 770) so that

A(x ,y, t) = A5 (x ,y)A( t )

where A5 is the spatial dependence of the field amplitude

and is generally considered to be known . (The last section

will deal with results for x and y unknown.) A(t) is the

randomness of the amplitude due mostly to spontaneous emis-

sion (Ref 3:765 ; 21:236) . If the laser output is considered

to be amplitude stabilized (Ref 2:32; 18:378; 28:2399; 29:784;

and 33:63), then A(t) becomes a- simple, non-random constant ,

A , and the fluctuations of the laser light are primarily in

phase (the effect of a random A5(x,y) will be considered

later). In addition , 4,(x ,y,t) is also considered separable

80 that

4 (x ,y , t) = ~ 5
(x ,y )  + ~~t)

where $ is the non-random spatial dependence of the phase of

the field (the random case is treated later) and 4 (t) is the

randomness of the phase that accou nts for the line broadening

of the laser . Therefore ,

U(x ,y , t) = A {A5(x ,y)exp (j .~5 (x ,y))}exp (j~~(t ))  -

A U5 (x ,y) exp (j ~~( t ))  (1)

8
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It is assumed that the single mode lasers discussed here

operate in the TEN00 mode so that the spatial part of the

field , U5(x,y), has the form of a gaussian spherical wave,

U5(x,y) ~~~ ~~~~~~~~~~~~~~~~~~ ~~
2
÷~~

2) 
(2)

where~J!i is a normalizing factor for unit power flow (i.e.

fI~ U 8 I 2 dxdy=l) , R is the radius of the spherical wave phase

front, a~nd w is the “spot size” of the gaussian amplitude

distribution (equivalent to the e~~ point or I~~ times the

standard deviation of a gaussian curve) (Ref 33:307).

Single Beam. From Eqs (1) and (2) for the output of a

single laser at some initial plane in front of the laser

output mirror,

U0 (x,y,t) =~/Ti 1 exp [_i ~~~.(x 2+y 2 ) J A exp (j (O+4 (t ))  (3)

where ~ is the complex radius of curvature defined by

1 1  A
- 

(4)

and 0 has been -added as an arbitrary phase angle. This phase

angle is considered a controllable parameter (it could be a

function of time) which will prove useful later on. A is

also assumed to be a controllable quantity .

The random phase of a free-running laser is - ultimately

9 -

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a result of spontaneous emission and quantum noise. These

noise sources cause the phase to be a stochastic process

known as a random walk (Ref 18:370-371; 34:181). It is well

known that such a process can be described as a Wiener-Levy

process (sometimes called Brownian motion) that is zero mean,

gaussian , and non-stationary . Therefore , using known results

for the characteristic function of a gaussian random variable

(Ref 26 :254 , 474-510) ,

E(U0(x,y,t)) = AU0s(x~y)E[exp{j(O+4 (t))})

AUos (x~Y)exP[J O - 
a2(t)) (5)

where E( ) means to compute the ensemble mean or expected
value of the quantity in brackets , and a2(t) is the variance

of the random process 4 (t). If n(t) is a white noise pro-

cess that is zero mean, gaussian, and stationary then the

H Weiner process , 4(t) can be written (Ref 26:502),

•( t )  = ~~~~ n(u)du

If a is the height of the power spectral density of n(t),

then the variance of •( t )  is , —

a2(t) at • 
- (5a)

Therefore, the mean of U0 in Eq (5) goes to zero as t

• - increases . -

10 - 
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The correlation of U0 now becomes

E(U0 (x,y,t)U~(x ,y~ ,t~))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A2U05 (x,y)U~5(x ,y~)E{ex~{j (~(t)-~ (t )) } )

A 2U05 (x ,y)U~8(x ,y )exp[_ •c!i(t~ t ) J

A2Uo5(x,y)U~s(x ,y~)exp[_ ~it-t ’ iJ (6)

where c~ is the variance of the gaussian random process

A~~t,t~) = ~~t) 
- ut’) (7)

and - = - 
~.lt-t~~ (Ref 8:139; 26:476, 502). Now the

correlation of U0 in Eq (6) is stationary even though the

phase ~~t) itself is not.

Multi-Beam (Coaxial). Figure 1 (on the next page) shows

the case where N beams are combined coaxially. No consider-

- ation is given here to how the beams are combined. Since

this investigation was motivated by a mode-locked laser, each

mode can be modeled by a single mode laser with a frequency

offset, so that a frequency term is added to the time depend-

ent part of Eq (3), 
.

U0 (x,y,t) = U
05 (x,y) Aj exp{j(2ir fjt+0~+~~(t))} (8)

ii.

• • _
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• Fig. 1. Multi-Beams Combined Coaxially

where f~ is the (controllable) frequency spacing between

adjacent spectral components of U0 . The number of lasers , N,
N-i

that are used is only limited by the total bandwidth , i~O 
Ej ,

since the total bandwidth must be less than or equal to the

gain line width of the lasers being used. In general, f~

could have an additive random comp.onent , but this will be

• ignored here for simplicity . It is also assumed that the

$j(t) are statistically independent. Therefore, as with

Eqs (3) and (5), - 

- 

-

E(U0(x,y,t)) = U05 (x,y) E Aj exp [i (2uTfjt+Oj) - 
01 t)J (9)

- 
• 
12
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where a~~(t )=a~ t is the variance of the phase of the ith beam.

This might be called an “open ioop” expression (similar to

Eq (5)) in that A~ , 
~~~~~ 

and O~ are deterministic and unre-

lated to ~~(t), i.e. there is no attempt to use measurement

dependent feedback to compensate for 4~~(t). The covaria ce

of U0 is

Cov(U0 , u~)

= E(U0 (x,y,t)U~(x ,y, t~)) 
- E(U0 (x,y,t))E(U~(x~,y’,t))

= U05 (x,y)U 5(x~,y) E Al exp (j2ir fj(t-t~))

- 

{ exp[-~~ It _ t
~ IJ  

- exp [-~’(t+t~))} (10)

Although the covariarice is non-stationary (since the mean of

~~t) is non-stationary), the last term in Eq (10) goes to

zero quickly with t and t’ and the covariance is quasi-

stationary . The mean of the field in Eq (9) behaves as in Eq

(5), and the covariance of U0 in Eq (10) varies with the

- statistics of 4~~(t) similar to Eq (6). -

It is possible to continue using the non-stationary

statistics of the free-running phase 4~~(t) as is done in

Eqs (9) and (10) . However , this will render the results

unusable for certain applications (notably the ambiguity

function in the next section). In addition , there is pres-

ently no known way to measure such field quantities directly .

Therefore , the following assumptions will be made : First ,

the mean of the field (as opposed to the field intensity)

13
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will be considered the signal of interest. Second , it will

be required that for the field of any laser to be observed

at any point in space or time, it mu~t be coherently detected.

This necessitates a receiver structure as shown in Fig. 2.

In ~enera1, with no control, the phase of the detected signal

would be proportional to •i(t) 
- •0(t). Since both are

independent Wiener processes , their difference is also a

Wiener process. 1~owever , if the control is used , then the

local oscillator phase 4 0 (t) becomes a function of a measure-

ment made by the closed loop receiver . This measurement is,

in turn, a function of the phase difference ~1(t) - 4 0 (t).

Therefore, 4 0(t) is no longer independent of 4~~(t). If the

Combiner

Observed~~~~~~,/
”

~~~~~~ 
~~~~~ to~~~— —>signal

• 

f 

llato control

Fig. 2. Coherent (Heterodyne) Detection of a Field

14
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control apparatus is properly designed , the phase difference

- 40 (t) will be a stationary process since the control

mechanism is tracking the temporal variations of the differ-

ential phases , i.e. 4 0 (t) is nearly locked to ~~(t). (This

assumption is often made ImplIcity ; see, for example, Ref 21:

237; 24:78,85.) In an absolute sense the two phases are

• still proceeding in a random walk manner , however , the receiv-

er is only observing the difference between the two phases ,

and this difference can be controlled arbitrarily well in

theory. It is not generally pc~ssib1e to make q0 (t) precisely

equal to ~~(t). thereby making the observed signal totally

non-random . Thus, the receiver of Fig. 2 usually produces

non-exact or noisy phase control, wherein some , but not all,

• of the received-field’s instabilities are compensated.

- 
- 

- For the multi-beam case in Eq (8), when the field is to

be observed , a receiver such as the one illustrated by Fig. 2

must be used to-coherently detect the signal. To simplify

matters Eq (8) can be rewritten in terms of measureable field

quantities as

U0(x,y,t) 

N—i
- = U0~ (x,y) 

~~~ 
Ai exp{j(2~

fjt+0i+4~~(t)_4 o (t))}

= U0~ (x,y) N3~ Ai cxp~j (27r f~t+Oj+~j(t))} (11)

15
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where ~~~t) is defined to be the difference between the phase

of the reference laser , ~0 (t), and the phase of the ith laser.

If the phase of each laser is locked to the reference (sitni-

lar to Fig. 2) then each of the ~~(t) in Eq (11) can be

considered stationary . The use of a phase locked loop as a

control mechanism will invariably change the gaussian random

process q~~ (t) into a non-gaussian process cfj(t) such that

E(exp{j4~~(t)}) is not necessarily exp [_ ~1~} and the (t)

are not necessarily independent. Nevertheless , for the case

of a strong signal , i.e. for a phase locked loop with a high

signal-to-noise ratio, the 4~j(t) may be modeled as independ-

ent gaussian random processes (Ref 38:86-92).

Since all of the lasers are now locked temporally to the

phase of the local oscillator , the phase of the signal of

interest becomes the controlled phase differences between the

individual lasers and the local oscillator , and it is sta-

tionary. Hence the random walk nature of the phase of a

free-running laser (or lasers) will always be transparent as

far as any results derived from Eqs (8) or (11) are concerned.

- 
- By definition , then , Eq (8) will be understood to have 41(t)

that are zero mean, stationary , independent , gaussian

random processes when observed in the required manner (Fig.2).

The mean of the field now becomes -

E(U0 (x,y,t)) = U 05 (x,y) ~ A~ exp [j{27r fjt+Oj) -
- 

(12)

16
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where the variance , a~ , is a constant , and the covariance

of U0 becomes

Cov(U0,U ) = U 05 (x,y)U~~(x~,y~) Z A~ exp(j21Tfj(t- t~))

(13)

where R4~~(T) is the correlation function of 4~~(t) and depends

only on T t-t . Now, a~ is a measure of how well the ith

laser ’s phase is controlled. The degree of control necessary

can be calculated based on system requirements (this will be

done later). It should be noted that although Eqs (12) and

(13) are apparently statistics of the field of interest, they

are technically -the statistics of the product of the field of

interest and the field of the local oscillator in the required

receiver. Since this assumption is always made, however,

explicit use of the local oscillator field will not be used.

Multi-Beam (Array). It may not be possible or desirable

• for physical or economic reasons to combine the individual

laser beams coaxially . In this case the lasers may be

aligned side-by-side in a one or two dimensional array simi-

lar to the antennas in a phased array radar (Ref 7:1103) .

Figure 3 (on the next page) illustrates a rectangular array

where Dik is the (center-to-center) spacing in the x direc-

tion, dik is the spacing in the y direction , and Dik and dik
are larger than the spot size, w , for all i and k. Now, as

shown in Eq (14) on the next page , the field becomes

17
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Fig. 3. Front View of Laser Array

n-l m-l
U (x ,y,t) = E Z U (x+D.~~,y+d.l,) A.

- 0 i 0 k 0  O S 1 1r~ 1

- 

~~~~~~~~~~~~~~~~~~~~~~~~ (14)

where mn = N. The lasers could be arranged in a circle,

- 

- spiral , or any other geometrical shape, but for simplicity
— the array is considered rectangular unless otherwise noted.

- Essentially Eq (14) is the same as Eq (8) except that the

- spatial term is included within the summation . Similarly ,

the mean of the field is , -

‘8



E(U 0 (x ,y , t ))  = 
~ U os (x+Dj k,y+djk) Ajk

exp [J (27rfjkt+ejk) - ~~k) (15)

and the covariance of U0 is

Cov(U0,U~) = E E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A
~k

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (16) —

Since the spatial and temporal parts of the field have been

assumed to be separate , the mean and covariance of the field

in Eqs (15) and (16) behave the same with respect to l jk(t)

as Eqs (12) and (13), i.e. only the spatial part of the field

has been changed.

Far Field Model

The f ields given in Eqs (3), (8), and (14) are now prop-

agated through space by means of the well-known Huygens-

Fresnel principle (Ref 4:370-375; 12:40-46). Interactions of

the field with the atmosphere are not considered. In addi-

-tion, the Fraunhofer condition (Ref 4:382-386; 12:61) is

- 
- imposed since consideration is given here only for the far

field. (Since the space and t ime parts of the fields are

separate and the Huygens-Fresnel principle affects only the

spatial function , the t emporal results that will be deter-

mined , including the effects of the random process 4~~(t) ,

are unchanged by propagation through space. If desired , the

- 
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fields could be determined in the near field using the

FresneJ. condition as in Ref 4:382-383. However , with little

loss of generality , the Fraunhofer condition is used here for

simplicity.) A sufficient condition for the Fraunhofer case

requires that

ir(-x2±y2)max (17)
I

This may be a rather stringent condition, for example, in

the multi-beam array case where (X+Djk)max and (Y+dik)max
may be on the order of 10 cm. Then if A = 1O.6p, , z1 must

be about 600 m to be an order of magnitude larger than

- w (x2+Y 2)max -

A

After propagating a distance z 1 down the optical axis ,

the field becomes

U1 (x 1,y 1, t) = - -

~~

.-- exp [ikz 1)exp (i (x~+y~)]ff U0 (x,y,t)

exp [_~ (~
3!__)(xx 1+yy 1 ))dxdy

- 

= ~~~~~~~~~~~~~~~~~~~~~ 
- 

(18)

where P( x3 ,y) is just the phase factor—in front of the inte-

gral and 
~9J~~~~

,( ) is the two dimensional (spatial) Fourier

transform of U 0 (x ,y , t) on x and y (Ref 12:61). Although U1

is considered a function of the rectangular coordinates

20 - 
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x 1 and y 1,  it is also a function of the spatial frequencies

and f~ where 
~~ 

(x 1) / (A z 1) and f~ = (y 1 )J (A z 1) in

keep ing with the nature of the Fourier transform. In the

following discussions , U0 (x,y,t) is not considered to have

an explicit aperture function limiting its spatial extent at

the laser output . As noted in Ref 33:312-313 , a conservative

aperture design for maximum power transmission makes the

aperture size about 3w (where w is the spot size of the beam) .

The diffract ion effects  of this aperture on the beam profile

are completely negligible, hence there is no explicit depend-

ence of U 1 on the aperture. Any other desired aperture

function may be used and U 1 would become simply (though per-

haps tedious ly) the spatial convolution of the Fourier trans-

forms of U05
(x ,y) and the desired aperture.

Single Beam. If the field of Eq (3) is used in Eq (18) ,

the resulting far field for a single beam is

U 1 (x 1,y 1, t) =

exp{j (O+4 (t ) ) }  (19)

The mean of the far field becomes

E(U1 (x 1,y1 ,t)) = ~~~~~~~~~~~~~~~~~~~~ A exp [jO_ ~~_) (20)

and the correlation becomes

E(u1 (x 1,y 1, t)u~(x;,y;,t’)) = P(x1,y 1)P*(x ,y ) U 15 (x 1,y 1)

U~5(x~ ,y~) A~ exp (-o
2+R~(i)) (21)

21
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where U15 (x1,y1) = 
~~xy (U os (x

~Y ) ) .  For comp leteness

~~~~~~~~~~~~ = 
~~~.

(u 08 (x)) ~~~(U 03 (y))

- ~~~i~~~[exp (~j~~ x2))~~y[exp(~j~~~y2)J

=~~~~~~ ~~~ exp [i ~~~ (x~+y~)) (22)

— From Eq (20),

P(Xi~ Yi)t~xy (Uos (x sY)) -

f~~~~exp (jkz) -

= 

~~ 
exp {i fLy(q+z1)(x~+y~)] (23)

and from Eq (21), 
-

P(x 1,y 1)P*(x ,y)U 15 (x 1 ,y1 )U~5(x ,y)

= exp{j ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (24)

The intensity of this single beam in the far field is —

I i = U1 (x 1,y 1 , t)TJ~ (x1,y 1, t)

2(a2+b2) A2 exp[_ ~IL~L (x~+y~)) 
- 

(2 5)

where from Eq (4) ~ has the form a + jb where

22
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a 
z 1( iy w 2 ) 2  

b = 
- - 

~iA (wz1)2 —

(n w~2 ) 2 + ( A z ) 2  ‘ (uw 2 ) 2 +( Az .)2

and in the far field case R z 1. In Eq (25) the far field

intensity of the single beam is completely deterministic

since so far the randomness has been assumed to be only in

phase.

Multi-Beam (Coaxial). Again, the extension can be made

to sum N beams and the far field now shows some interesting

properties . U 1 (x 1, y 1, t) in this case can be determined

either by adding N versions of Eq (19) with the appropriate

addition of a frequency offset, 
~~ 

or by applying the

Huygens-Fresnel prInciple to Eq (8). The same result is

obtained in either case ,

U1 (x 1,y 1 ,t) = P(x 1,y 1 )U
15 (x1,y 1) ~

H, 
- 

~~~~~~~~~~~~~~~~~~~~ (26)

The mean of this far field is

E(U1 (x 1,y 1,t)) = P(x1,y 1 )U 15 (x 1,y 1 ) Z

exp (J (2Trfjt+O~
)_ ~.iJ (2 7)

The covariance is

• 
Cov(U 1,U ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ E Al

exp (i21T fj(t_t’~
)){exp (-al) (exp (R4~~(r-))-l)} (28)

23
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The intensity of this far field is not deterministic as it

was for a single beam in Eq (25) because of the cross terms

between beams . ¶fhe mean of the intensity is

1~
E (I~ ) = 

-2 (a 2 ±b2) 
exp [_ ~iL~.(x~+y~ ) ) ( E  Al + A~ Ak

i+k

exp{j (271(f j -f k )t+ ( o j -e k)) - 
~~~ ak )) (29)

This is a somewhat formidable expression , but some minor

simpl ifying assumptions later will make it more useful .

Examination of the mean in Eq (27) yields some interest-

ing results. It is reasonable to assume that although the

q~~ (t) are independent , the are certainly similar if not

identical. This is because of the nature of the noise

sources producing the random phase fluctuations , because of

the similarity of the phase locked ioops , and because all of

the lasers are assumed to be of the same type and construc-

tion . Also , since the A~ are controllable, they are assumed

to be the same for convenience. Therefore , Eq (27) becomes

E(U1 (x 1,y 1 1 t)) = P(x1,y 1 ) U 15 (x 1,y 1 )A exp{_ 
~~

-

~~~)

z exp (j(2n-f.t+o.)) (30)
i 1. 1

- 
- 

At this point some assumptions must be made for f~ and

0. so that a closed form solution can be obtained. If the

frequencies between the lasers are all the same (as in a

24 -
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mode-locked laser) then f~ = i~f where Af is the constant

frequency spacing . A similar assumption can be made for

but the results will not be affected in any significant or

useful manner, so O~ is considered zero. Now, Eq (30)

becomes

E(U1 (x 1,y 1,t)) = P(x1,y 1 )U 15 (x 1,y 1 ) A

exp [.- ~~~
— + i(~!L~) 2lT L~ft)  sjfl ~~~~~ (31)
2 2 sin ir~ft

The (sin Nx)/(sin x) term in ~q (31) (the typical result of

a mode-locked laser as in Ref 39:131) is a pulse train in

- 

- 
- time as shown in Fig. 4. The pulses have a null-to-null

- sin(c~iN/2)sin(w/2)

- 

N = 8 ( N = 8 )

Fig. 4 Plo’ of sin (N ~)/sin(~) for N=8, c~=2irE~ft

pulse width of

- tp =~~~ f 
• (32)

and a pulse recurrence interval (pulse rate) of

T~~~=~~~~~ (33)
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For the waveguide CO2 laser (whose gain line width is about

700 MHz) , N&f must be less than or equal to 700 MHZ. There-

fo re the minimum achi evable pulse width , t~~, is about 3 nsec.

T~ depend s on L\f which is limited by the total number of

lasers used. The peak amplitude of the (sin Nx)/ ( s in  x)

function at each T~ is just  N as expected for coherent super-

position of N sources . The pulse width and pulse rate both

depend on N and L~f which are assumed to be under the opera-

tor ’ s control. Eq (31) also shows that the apparent frequency

of the field is changed to the optical frequency f 0 minus

— (~ji)t ~f. Ref 41 reports experimental results of Eq (31) .

If the assumptions for Eq (31) are applied to the inten-

sity then the series terms in Eq (29) become —

Z A I = A 2 N -

and

— 

- A~A~ exp {i (2~~ f~
_ f

k)t+(0 l
_ 0

k
) ) _  

2

= A2 exp (-a 2) E E exp (j(i-k)2~i~ft)
i+k

= A2 exp (-a2){E(N-i)(exp (j2ir t~fti)+exp (-j2rrAfti))}

= A 2 exp(-o2){2 E (N-i)cos(i(2iit~ft)))
1

2 1 2~ (1-cos N2rrAft
- = A  exp~-a f l  . - N
- i.. 2 sin2 ,Tt~ft

= A 2 exp (-a2) (
b iTt N~ A f t )

2 
- N -

sin irAft
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(See Ref 22: 104-105 for series sums .) Therefore,

E(I~) = ~~
(
~~~~k1 ~~~~~~~~~~~~~~~~

[(l~ exp (~ ci 2 ) ) N +  ~~~~~~~~~~~~~~~~~~~~~ (34)

If a 2 -’-°° , exp(-c r 2)- ’- O and E( 1 1) becomes a constant with respect

to time . Thi s is equivalent to the result of a multi-mode

laser with no mode-locking. If a2—’-O , exp (-a2)-’-l and E(I1)
is a pulse train, i.e. E(Ii)+I E(Uj(x i, yi,t))12 for c2-~0.

This is equivalent to a mode-locked laser output .

The random phase fluctuations ~~(t) simp ly cause the

amplitude of the mean of the field in Eq (31) to be reduced

by exp(- Q!. ) . - As the variations in ~1(t) become larger , the

amplitude of the pulses in the far field becomes smaller .

From this re lation , the degree of control of the phases of

the lasers can be calculated. If the desired maximum atten-

uation is r~, then

° “~~~ln ri (35)

For example , if r~ is desired to be no larger than 1 db (about

O.80) then ~ must be about 0.67 rad . Similarly , for phase

control on the order of 1 rad , n is about ~~~~ The- ~effect of

becomes even clearer upon examination of the total

power flow through the z = z1 plane . The mean -power flow is

E(Power) = E [171U 1 (x i ,y i , t)I2dxi dy i)

- 
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E(Power) = If E(Ijdx1 dy1 
--

Since U05 (x ,y) is already normalized for unit power flow (Eq

-• 
(2)) and the Huygens-Fresnel principle merely changes the

distribution of the power , not the amount , the mean power is

- I E(Power) = A 2 [ ( l~ exp (~ a 2))N+exp (~ a 2) (sin N~ Af t )
2)

Therefore , at t - = 0 (pulse peak) and for A = 1,

E (Power) ( l-exp(-a 2 ) )N + exp (-a 2 ) N 2 (36)

As a2 -’.co , E (Power) approaches N (incoherent superposition) and

as a2÷0, E(Power) approaches N2 (coherent superposition).

It is also instructive to examine the behavior of the

covariance of U1 in Eq (28). For oj = a,

Cov(U1,Ufl exp (-a2)(exp(R~(t))-1) (37)

The general cEaracteristics of R4(T) are that R4 (0) = a2 and

that R4i(T) = R$(-T), Rq (0)~~IR~ (T)I, and generally R~(T)+0
as t-~~~~~ (since ~~ (t) are zero mean processes) (Ref 23:126;

26:336-338). At T = 0 , the covariance of U1 becomes the

variance, o~ , of U 1 and -

- a
~t ~~ 1-exp (-a2) 

- 

(38)

By the Cht~byshev inequality (Ref 26:150) the probability that
-

. 
a random variable differs from its mean by more than an

amount c is less than or equal to its variance divided by c2 .
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Therefore ,

Pr ( - I U 1-E (U 1 ) I ~~c) $ 
a 2 

1-exp(-a 2)

Now as ~
2+O , Pr (1U 1 -E(U1) I~~c) approaches zero, and U 1 is equal

to its mean with probability one, i.e. the smaller the van -

ance of 4.(t),the more closely the field approaches its mean

- 
- in Eq (27) .

As r-~~, the two sample functions 4(t) and q (t ) become

more and more uncorrelated. Typically, R~(t) = 0 for all

T?Tc where T~ 
is called the coherence time of the process

4(t). For time differences T larger than the coherence

time, the phases at the two times are uncorrelated. From Eq

(37) , T>T
C 
implies that 

-

Cov (U 1, U~ ) = 0

i.e. the co~ierence time of the phase 4(t) is the coherence

time of the field U1. In general, Cov(U 1, Ufl will decrease

faster with t than will R~(T) so that the effective coherence

time of U1 may be less than that for 4 (t) , however , this

is less true as a2#O (Ref 13:66). The coherence length of

the field is related to the coherence time by the speed of

• light. (A longer coherence time implies a greater coherence

distance.) Therefore, field points separated by times .(dis-

tanees) greater than the coherence time (distance) are

uncorrelated. 
- -

One further comment on Eq (27) concerns the beam waist.

Since the individual beams are added coaxially, the waist of

29
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the total beam propagates as the waist of any single beam.

Therefore, the waist w 1 at a dis tance z 1 is
- 

~~~~~~~ (39)

where w is the waist at z = z0 (Eq (2)) , and the far field

here implies ~1>>1!~!~ (Ref 33:308) . For example , if w = 1mm

and A = lO .6~ , then z>>O.3 m which is a much less stringent

condition than the Fraunhofer condition of Eq (17). There-

fore , Eq (39) is essentially an equality when the Fraunhofer

condition is met .

Multi-Beam (Array). For this case, Eq (26) becomes

U1 (x 1,y 1, t) = Z Z  P(xl,y l)~~~y(UQs (x+Djk,y+djk))Ajk

exp{j (2 IT f~kt+0Ik+4 1k (t )) )  (40)

where as in Eq (14), mn = N. As in Eq (22),
- 

~~~ 
(U0 ~ 
(x+Djk , y+d~~))

= 
~~~

(Uos(x+Dik)) ~3~~(Uos(y+d .k))

exp[j (~~
L)xlDjk) ~~~Uos (x))exP [J (~-~1L)yl d.~) ~~~(u 05 (y))

= 
iA~i exp {j ~~~~~~~~~~~~~~~~~~~~~~~~~~~ } (41)

where the shifting theorem of Fourier transforms has been

used (Ref 12:9; 27:65). Now Eq (40) can be written

- 30



U1 (x 1,y2 ,t) = I’(x1 ,y1)U15(x1 ,y1) E Z
ik ‘

- 

- 

~~~~~~~~~~~~~~~~~~~~~~~ } (42)

This is identical to Eq (26), the field for the multi-beam

coaxial case , except for t~ where t~ is dependent on time

and space ,

= ~ + 
Djkxl + 

djky1 (43)S f
~k

A z I fik A z i

The mean of this field is simi~ar to Eq (27)

E(U1 (x 1 ,y1 ,t)) = P(x1 ,y1 )U 15 (x 1 ,y1) E I Aikik

2

exp [j(2iTfjkt5+Ojk)_ 
ik ) (44)

and the covariance is similar to Eq (28)

Cov(U1,U ) =P(x1,y 1)P*(x ,y )U1~~(x1,y 1 )U~~(x ,y) Z E

exp (j21Tf
~k
(tS-t )){exp(-a

~k
2)(exp (R~~k

(T))_1)) (45)

where t5 is a function of t , x , and y .  The mean of this

field’s intensity is

E(11) = 
2(a2+b2) 

exp[- ~i~-(x~+y~)) 

-

~1W Z1 Az 1

I~ - E [ I Z  Z A Ik exp{j(2ir fjkt+0jk+~jk(t))}t2J (46)
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For the general two dimensional array this expression and Eq

(44) cannot be evaluated analytically without numerous assump-

tions. Eqs (44) and (45) are similar to Eqs (27) and (28)

respectively with t replaced by t~ . Qualitatively, the two

dimensional array produces a pulse train in the far field

(there are still N different frequencies being added so the

results of Eq (31) hold for x 1 = y1 = 0 in Eq (44)). However,

there will be some additional spatial modulation because of

Eq (43).

Generalized Results and Dualit~
Eq (42) is the key to some very general and interesting

results. In this equation , if 
~~k’ 

Dik, and djk are consid-

ered independent random variables , then Eq (44) becomes

E (U 1 (x 1,y1,t)) = P(x1,y 1 )U 15 (x 1,y 1) E Z Aik exp (j0~~)

- ~f(2~t) ~D (2~~~
L) 
~~~~~~~~ ~~ 

(1) (47)

where the ‘7’ s represent the characteristic functions of the

indicated random variables as functions of the indicated

arguments (i.e. 
~,~

(cx) = E(exp(jc~x)) where x is a random

variable) and is evaluated at 1. Now if f, D, d, and 4

are gaussian (and stationary) with means 
~~k’ 

Dik, dik and

•ik and variances a~ , a~ , a~ , and respectively, then Eq

(47) becomes (see Ref 26:159),
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E(U1) = F U1~
-(exp

- 

I Z  Aik exp (J (27Tf.~ t+0 .~+~.~)) (48)

It is also reasonable that a
~ 

0 (i.e. f is completely

deterministic) and 
~ik 

= 0 so that

E(U1) = P Uisexp{_½{(211j 
) 2 o~ +(2iT~ Z!)2 cr~j+ci~~) }  Z ~ 

Aik

( 211D.kX: 2i~d.k
y lexpfj(2irf.~ t+ 1 + 1 + 0.1)1 (49)

- 
1 Az 1 Az 1 

1~~~~j

It should be noted that Eq (41) is still valid for D and d

random variables because the Fourier transform is taken term

by term and each Dj k , dik are just numbers (albeit part of

a sample space). In addition , D, d , and ~~~t) are considered

to have identical variances for each i, k as was assumed for

Eq (30) . -

Now , Eq (49) is a useful general result. If i = k

aD = ad Djk = d
~k 

= 

~~~ 
= 0 the result is the single beam

case represented by Eq (20) with A
00 = A and = 8. If

aD = ad Dik = dik = 0 the result is the coaxial case repre-

sented- by Eq (30) with Aik = A , 
~~~ 

= ~~ and 0jk = 8~ (i.e.

the double series collapses to a single series-). If aD =

0 the result is the general two dimensional array case

with Dik and dik deterministic as represented by Eq (44)

(with a
~k 

= a
’

) .
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If k = 0 , the result is the general one dimensional linear

array 
-

E(U1 (x1 ,y1 ,t ))  = P(x1 ,y1 )U 15 (x1 ,y1)exp{_%((27r~~!)2a~+a~))

- 2WD.x
I A~ exp j ( 2 i r f . t +  1 1 +e~) (50)
i 1 Az1

The deterministic version of this field (aD = 0) will be

treated in the last section as well as the case for D a

random variable.

- At -this point, three sources of error in the far field

that are a result of the physical positioning of the laser

elements must be considered. These are errors in the element

location in x (for a linear array , x and y for a planar

array), errors in the alignment of the individual optical

axes with each other , and errors in the element location in

z. The first problem can be considered in a manner completely

analagous to the results for the phase variance discussed

in connection with Eqs (34), (35), and (36). For the linear

array , each laser may have an error represented by the dif-

ference between its actual location and D~ . It is reasonable

that this error may be distributed in a gaussian manner so

that from Eq (50) the variance of that error is a~ . Now

can be determined as a function of x1 and z so that the

result has a specified effect on E(U1). For example, if

if x 1 = 1 in , ~ 
= lO. 6 p ,  z = 1 km , and °D 

= ~ mm , then

exp [_%( ~~~~1 )2a~~
) 

= exp(-0.18) =0.84. For a specified
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amplitude reduction (for example 8O7~ or about 1 db) and a

give-n range z~ , 
- the accuracy , °D’ with which the laser posi-

tions must be made can be found . The result is

aD~~~
( ) z l ,L2ln n (51)
2jx 1

where r~ is the specified reductic~n and aD, z~ , x~ , and A are

in meters . As z1 increases , the necessary accuracy of the

location of the elements decreases. A similar result could

be derived for ad or a planar array with aD and ad.
As for Eq (37), the covariance of the field varies

with element location as

2irx 2irx 1
Cov(U 1,U )~ exp [~( Az1~ 

aD)(exp [( A Zl
) R

D
(
~~~~~~~)~~~~ 

(52)

(Ref 26:159,476). But RD
(x_ x

~
) = E (DD ’~~~ E (D) E(D ) = D~

since D and D~~are independent (i.e. the location of one

element in no way influences the loc~ation of the next).

Since the element locations are uncorrelated , E(DDI = D~ =

and Eq (52) becomes

- 2-rr x 1 2
Cov(U1,uç) l_exp [_ ( 

A~~~ 
a~) 

(52a)

as .in the temporal case (although Eq (38) is a variance and

this is a covariance). - Thus the results of Eq (49) indicate

the complete time-space duality of this problem. The statis-

tical results are similar for instabilities in time or space
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(i .e. pc:~itional errors), and the general result contains all

cases of interest.

The second physical positioning problem occurs when the

optical axes of the lasers are not parallel . In this case

Eq (14) becomes , for a linear array ,

U0 (x,y,t) = S U05 (x+D1,y) A~ -

exp (j (2ir f~ t+O~ +~~ (t) + x sin of )) (53)

where o~ is the angle of the ith optic axis with respect to

the normal to the array . For small angles, sin o~, o~ and-

the far field becomes

U1 (x1,y1, t) = U1 (x1 -2iiz1o~ ,y1, t) (54)

where the frequency shifting property of Fourier transforms

has been used (Ref 27:65). The angle o~ now affects two

factors : exp (j ~~~~x1 _2iT z1o~)2) from Eq (22) and

2iTD .
exp [~ ~~~~~~~~~~~ (x i _2 1r z i o~ )) from Eq (42) .  For the coaxial ease ,

the gaussian envelope behaves as in Eq (39), therefore using ,

for example, the Rayleigh criterion (Ref 15:354,360) the

maximum o should be on the order of w1 or about 3 mrad - and

no larger . Similar results are obtained for y in the two

dimensional case.

One f inal , rather serious, problem in the area of laser

position- errors must be addressed. Eqs (26) and following

were derived on the basis that all N beams that were super-

imposed propagated a distance z~ into the far field. This

36
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assumes that z1 is measured from precisely the same point in

each output beam (for example, the beam waist). If this is

not true, i.e. if the waists are not perfectly aligned , then

the z1
1 s are not the same and in fact must be represented

as z1 +t~z~ where Liz. is the offset  of the ith beam . Substi-

tuting this new distance into Eq (26) indicates that

makes a negligible contribution everywhere except the

exp (jkA z~) term in P(x1,y 1) (see Eq (18)). If kLiz~ is

folded into the interval 0 to 2r r and is considered a gaussian

random variable independent of .~~
‘
~~~~~(t), then exp (jk1iz~) =

( a~)exp l_ .-

~
-J where a 2 is the variance of kLiz

~
. Even if the

beam waists could be perfectly aligned so that was zero ,

vibrations, thermal expansion, and other effects would corn-

bjne to create a Liz.. Presumably this additional phase

variation could be combined with ~~(t) and compensated appro-

priately. However, even this requires that the optical path

lengths from the point at which the beams are sampled to the

detectors that form the first part of the phase locked loop

must be equal. The bottom line is that for coherent combin-

ation, the relative phase of the lasers must be controlled

precisely, and at optical wavelengths that is a very strin-

gent requirement. 
-
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III. Coaxial Case

The coherent combination of several lasers coaxially,

i.e. with the optical axes of the individual lasers

coincident, led to a mean far field given by Eq (27).

Certain simplifying assumptions produced Eq (31) . This

field is seen to be a temporal pulse train as an “envelope”

on a “carrier” of frequency f 0 _ [~~ JLi f where f0 is the

original optical frequency . In addition , the signal has a

peak amplitude of ANexp [_ ~_J and has a spatial distribu-

tion given by Eq (23) which describes a gaussian spherical

wave. The temporal pulse train given by ~T T ~~~
t whose

characteristics aze functions of N and Lif suggests that

the signal could be used for ranging (as in a radar). If

so , a measure is needed for the performance of such a

system as a function of controllable parameters such as N

L and Lif.

Ambiguity Function

Before any performance criteria can be developed ,

there must be some assumptions regarding the receiver

structure . Since this is not a receiver design study, only

general assumptions will be made. (For further detail see

Ref  6 , 11, 23 , 32 , 37 , and 40.) The first assumption of

course is that the receiver employs coherent (heterodyne)

detection (Ref 11:173-200). Aside from the requirement

discussed in the previous section , this will result in

better performance than in the direct detection case since
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both amplitude and phase information are preserved . 
- The

heterod yne detector , however, is sensitive to spatial

alignment, b~tt this is not assumed to be a problem here .

The second assumption is that a matched f i l t e r  processor

structure is used. For the case of signals in additive

white gaussian noise (this is true in general for hetero-

dyne receivers), the matched filter is the optimum receiver

(Ref 6:18-32; 23:335-395; 40:311-317). The matched filter

essentially correlates the received signal with a known

signal and gives a peak response when the two signals are

“matched .” This of course requires that the receiver

structure change if the signal changes. Fig. 5 is a repre-

sentative system diagram . The third assumption is that

cer tain physical phenomena that affect the optical signal

as it is transmitted and reflected are ignored. These

Combiner

/
~~~~~~ [ J ~~~~Fi l J ~~ s(t)

Local Oscillator
F ield 

-

Fig. 5 .  System Diagram of Heterodyne Receiver

- 
- 
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include such effects as path losses , field of view , losses

in the op tics , f ie ld  al ignment , ap er tu re  si ze , and others.

These are ignored because they a f fec t  any signal in the

same manner and therefore . are unnecessary when comparing

the relative performance of various signal structures .

Based on detection theory, the likelihood ratio is a

function which , when compared to a threshold , produces an

optimum decision of which signal was the “most likely”

received . This likelihood function , in the case of a

heterodyne receiver (and gaussian noise) with a matched

filter processor , turns out to be proportional to

x ( T ,v) = 1  s(t) s*(t_T) exp (j2~vt)dt (55)

which is just a two dimensional correlation of a signal s(t)

(which can be complex) with its time (T )  translated and

doppler (v) shifted version (Ref 6:59-108; 31:70-75 ,118-158; 
-

37:275-313). The ambiguity function , x ( T , v), is a function
of time delay , T , that is related to the range of the tar-

get and doppler shift , v , that is related to the velocity

of the target. (
~ 

is actually “normalized” so that x(O,0)

corresponds to some known T and v .) The signal of

interest here is just the mean of the far field in Eq (31).

Since the on ly part of the signal envelope in Eq (31) that

40 
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varies with time is , and since the detector does

the spatial integration of the field , the signal of inter-

est will be considered to be

s(t) = Aexp [_ cj si.n Nir Li
f
ft (56)

where Aexp [- 

~
-.j is retained explicitly as part of the

amplitude of s(t) and exp{_ -2--J is considered to be the

strong signal approximation to the characteristic function

of the partially controlled random phase , 4~~(t) . Unfor-

tunately, substituting Eq ( 5 6)  into E q ( 5 5)  yields a

result that is not immediately integrable to obtain x(t, v ) .

However , over a single period , 
-

I - s(t) z exp
[~ ~~) 

sin N~~ft (57)

This approximation gets better as N gets larger. Therefore ,

— A2 ~ sin NiiLift sin N’iiAf(t-t)x(t ,v) — 

~~~ ~~t -T) exp (j2irvt)dt

= 
~~~r ~9~

(5(t) s(t T))

- = 
~~~ ~~~~

s(t)) *~~~(s(t..T))

= 
~~~~ ~~~~(

5(t)) * exp (j2 7rvT)~j1 (s(t)) (58)
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Now , by the duality property of ambiguity functions

(Ref 37:309-310)

x(T,v) = x 1 (v , -T)

where x is the ambiguity function of s(t) whose Fourier

transform is S (f) (whose ambiguity function is x 1 (T , v ) ) .

Now the Fourier transform of s(t) in Eq (58) is just a

square pulse of height 1 and width NAf whose ambiguity

function is given by (Ref 37:280)

[1 - 
~~~

j
~ sin N~Afv (l -~~~~]~ 

1 T I~~
NLif

- NLif

1x 1 (t,v)I = 
- (59)

0, elsewhere

Therefore , - 
-

I x (t ,v ) I  =

= 
A 2 

1
~ 

l v t ) sin 
~
NLif(_T)tl -

- 

NLi~ J i r (_ t )
{l 

-

{

~~~

[l - 
~~~~

J

~~Sifl ::~~T~1~~~~~~~ , I v l ~~NLi f

- 0 , elsewhere
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‘1

Ix(t,v)I

~_I~I 
.sin_NlrAfT

NLif~~

- NAf

Fig. 6. Ambiguity Function of sin(NiiLift)/~ Lift

- 

- Ix(T,O)l
Lif 1~~I \ 

_ _ _ _ _ _

-

_ __ _

- ~~~!
0 N r  (V 0)

(a)

A2~~ Ix(0,v)I -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V

(b)

Fig. 7.  Ambigui ty Funct ion for a) Known Dopp ler
and b) Known Delay
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Eq (60) is sketched in Fig. 6 on Page 43. Ix ( t , o ) I  is

shown in Fig. 7a, and I x ( 0 , v)I is shown in Fig. 7b foun d on

Page 43. 
-

It is now possible to obtain Cramer-Rao lower bounds

for estimates of t and V in terms of the signal energy to

noise ratio, the bandwidth of the signal , and the duration

of the signal. These are estimates of delay time and

doppler velocity for a given signal structure that has an
— ambiguity function x(T,v). The (parameter) estimate of

delay is denoted ~ and that of doppler is denoted ~~~~. The

variances (and standard deviations) of these estimates are

a measure of the precision of the measurement , i.e a

smaller variance implies a more precise measurement. Fol-

lowing Ref 31:70-74 and 37:294-299 the results are

A
= (Var (T-T) ) 

2 > 

[‘~Iff— iJ (61)

= (Var (~-V))~ 
~~ k/~ iS] (62)

where a
~ 

is the standard deviation of the delay estimator ~~ ,

is the standard deviation of the doppler estimator ~~~,

the signal energy is assumed to be much larger than the
- N0noise , the noise is given by the height , 

~2~’ 
of its power

spectral density (the noise is assumed to be white and

gaussian), and y and is are -

- 
= 4ir 2 ~~ f2IS(f)l2df (63)

4TT 2 

~~ 
t2 l s(t)I2dt (64)
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where y represents the m s  bandwidth of the signal s(t) and

is represents the rms duration of the signal. (Eqs (63) and

(64) were derived in Ref 31 and 37 for normalized signals

s(t) and S(f).) Eqs (61) and (62) also assume that there

is no coupling between y and is , i.e. that there is no linear

frequency modulation component (Ref 31:74). Now, the range

precision and range rate precision respectively are given

by (Ref 31:74)

C-

aR
_

’
a (65)

Aa~~ — .a 66)R ~~~v

The signal energy , E, is found -from Eq (56) in series form,

( a~
’( sin N-~ctifts( t )  = exp [_ 

TJ sin nLift

= exp (_ çjz exp (j2-IrLift) i

Therefore, 
-

E = 1TI5(t
~~~~

t

where T~ = is a period (Eq (33)) so that

- 
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E = J [Aexp{_ ~~_J Z(exp (j2lTLift))1J dt

2Lif

1
~ 

-
~

= A2exp [_cY 2 l J [N + I I exp [j2ir(i-k)tift)~ dt
J 1 i~k 

)

2Lif

= A2exp
(~
a2J (~ 

+ ~~ 
_ _ _ _

= A2exp [_a2)~~ (67)

— Eq (60) was derived from the approximation in Eq (57).

This approximation is good only for a single period of the

signal , s (t )  (Eq (56) ) .  However , s (t )  is periodic in t and

can be represented as

rn-l
s(t) = E Sa

(t_ iT )
i=0

= E S
a
(t_

~~~~
)

where m is the number of repetitions of S
a
(t)

~ 
5
a
(t) is the

approximation over a single period ~~ and T~ =~~~~~~~~~. Now

the ambiguity function of s(t) becomes -

x(T,v) = exp [j~
v (m_ l+p)

~~ JX a [T_~~~
,vJ 

sin

p=- (m-l) 
- 
sin i~~~~~~~~

-
~~~

where Xa (T~~~
) is given by Eq (60) (Ref 31:185-186). It is
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seen that the new ambiguity function is just the sum of the

old ambiguity functions shifted on the delay axis by

intervals of and multiplied by a weighting term . The

magnitude of the pth term of the ambiguity function is

just (Ref 31:187),

sin
lx (t,v)I 

~ 
ka[T !,v) 

5jfl (68)

Thus there are delay ambiguities at intervals of and a

sin irV ( m - I p I ) ~~fine structure (due to 1 ~ in doppler withsin

intervals of Lif. -Now some specific applications for a
- 

- 
coaxial system -whose far field is given by Eq (31) can be

considered.

Range Measurement

When only range measurements are desired , the doppler

is considered to be known, i.e. tracked (or zero for a

stationary target) .  If the doppler is unknown, then it

must be considered at the same time T is considered i.e.

jointly estimated (this is done later in this section), or

the ambiguity function must be broad along the v axis so

that there is little chance of error in estimating T.

Therefore the interest in x(T,V) is just along the T axis.

Fig. 7a is the T axis for a single pulse. Multiple pulses

(Eq (68)) would produce a periodic function with amplitude

weighting. As long as the round trip time (delay) of a
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pulse is less than the pulse rate , there is no ambiguity

as to which peak on the t axis is involved. The width of

the central peak in Fig. 7a is a crude measure of the

precision with which the target range can be measured.

Basically, this precision is a function of so that as

the total spectral width of the field is increased the

range precision can be made arbitrarily good within the

limit that NA.f is less than or equal to the gain line

width of the lasers. Explicitly, the range precision is

found by combining Eqs (61) and (65) to obtain

- 

- 

CR �
~~~fZW1 

- 

(69)

Now from Eq (63),

4w2 
L 

f 2 1 8 ( f ) I 2 d f

if S(f)  is normalized. If S(f)  is not normalized then

- 

- L: f 2 I S ( f ) l 2 df
y 2 = 4w 2 (70)

Now , from Eq (57) 
- -

- 

s(t) = Aexp (_~~_)5~~w~~~~
t

Therefore, 
-
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1A~pt c)~ , I f i ~
S(f) =~~~ 

-

t o ,  elsewhere

= 4w2 
2i2 f2

f~~J d f

2 f 2 ~~~~} 
df

= ~~~~ - N2Lif2 (71)

So that using Eqs (67) a~d (71) in (69),

C

R 
2J2Azexp~

_ cr1N 
[2~-(NLif)2)

c/
~
1
~
7 (72)

/8w 2A2exp (-c~2)N
3Lif

Eq (72) shows that the range measurement precision is pro-

portional to N/~K~ 
which is in line with what was expected.

Since NLif is the total bandwidth of the signal without

regard to the frequency spacings , the assumption of f~ = iLif

was not really restrictive . Eq (72) then is a rather general

result that represents the best possible range measurement

precision obtainable by the temporal signal in the mean far

field of Eq (27).

Ve1ocifl~ Measurement

In the dual case, a similar derivation can be made for

dopp ler (velocity) measurement precision. In this case the
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range is presumed known (or the ambiguity function is broad

in T ) ,  so that the interest in x(T,V) is only along the v

axis. Fig. 7b is the v axis for a single pulse. Multiple

pulses introduce a fine structure as given in Eq (68). For

a single pulse , the crude doppler measurement precision

improves as N~f gets small. This implies that increasing

t~, = 
~~~~~~~~~ also increases the doppler precision . Basically,

this says that the more information that is received (i.e.

the longer the pulse), the better the doppler precision

can be made. From Eqs (62) ari d (66)

- > A (73)
- 

aR
_
~~~

J
~~ -

and from Eq (64),

6
2 = 4ff2 1 t2 I s(t)I2dt

so that for the unnormalized s(t) of Eq (57)

6
2 = 4~ 2 £ t2~ s(t)~ 2dt (74)

£ 15 (t)I2 dt
- 

Therefore for a single pulse , 1 1 s (t)I2dt A 2exp (_a 2)~~~ as

in Eq (67) and

- 

- 

- 

~: t2 I s (t)I2dt A 2exp (-~~J 2 f2~~sin
2N~r~ft dt

A2exP(j02) L1 (75
~r~~ f 2L~fJ -
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where the integral has been taken over a single period of

the signal. For m pulses , the signal energy is multiplied

by m so that Eq (74) becomes

6 2 = 4~~2 A2exp~ o
2) 

[Tn
) 

[mA
2 exP~ _ a 2]Nj 4

= 

~~f2 
- 

- (7 6)

and is is seen to be independent of the number of pulses not-

withstanding the fine structure on the doppler axis given

in Eq (68). This just indicates that the doppler precision

is affected only by the pulse width and not the number of

- - pulses. The fine structure in Eq (68) tends to improve the

resolution of targets with similar doppler velocities , but

it also increases the number of doppler ambiguities (peaks)

(Ref 31:191). Eq (76), however, is concerned only with

measurement precision and not resolution , i.e. local

accuracy without regard to ambiguity . Now using Eqs (67)

and (76) in (73),

H Aa. �

H ~ /2A~exp (-o~ JN 2
‘1 N~~f N ~f20 - - -

A/N 0~ f~ (77)
/16 A2exp (-o2) 

-

and the doppler precision depends only on ~f .

This result is slightly different from what was ex-

pected from inspection of Eq (60) since N does not appear
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in Eq (77). The reason is found in Eq (75) where the rms

signal duration was determined for a period. When this is

done for square temporal pulses (as in radar theory), the

result is an integral over the pulse width . If this is

done here, by analogy , then Eq (76) becomes

62 = N~~f2 
(76a)

so that Eq (77) becomes

F - 
- 

a — (77a)
- 

R /16 A2exp(-.ci2]

The discrepancy occurs because s( t) is of infjnite duration.

This is the dual of the radar problem where the ideal rec-

tangular signals have infinite mean square bandwidth

(Ref 31:49-50). In that case the signal is considered band

limited and appropriate approximations made. The result is

dependent on rms pulse width as it is in Eq (77a) for this

case. However, for the lasers , even though the signal is,

strictly speaking , time limited (it is at least causal) the

infinite result may be more closely approximated here than

for the radar case. Thus Eqs (77) and (77a) represent an

interesting dichotomy of results that are both reasonable ,

but both different . These equations represent the best

possible precision in doppler measurement (when range is

known) that can be obtained from the field of Eq (31).
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Coupled Neasurements

It is often desirable to make measurements of both range

and velocity , i.e. the case where both are unknown. Eqs (72)

and (77) or (77a) are still valid as long as there is no

linear frequency modulation on the signal , i.e. the complex

envelope is real (Ref 31:74; 37:299). If this is the case,

the range precision can be improved by increasing N or I~f.
However, increasing 1~f degrades doppler precision relatively

rapidly. By increasing N, it is possible to improve range

precision while the doppler precision remains the same -

(Eq (77)) or degrades more slowly (Eq (77a)). - Doppler pre-

cision can be increased by decreasing L~f , but to maintain
the range precision , N must he increased accordingly. This

is a rather nice . result although increasing N becomes pro-

hibitively expensive at some point (even for the Federal

Government) so there is a limit on the range and doppler

precision that can be obtained. In addition , since NL if must

be at most equal to the laser gain line width , as N is

increased , Af is decreased. This coupling between N and Af

further complicates the task of obtaining the best possible

simultaneous range and velocity precisions . 
- - -

It is possible to improve °R and a~ simultaneously by

increasing the energy to noise ratio , ~~~~
- . If N 0 is fixed ,

- 
- 

this can be accomplished by increasing E. From Eq (67), E

can be increased by increasing N or decreasing ~tf with the

same effects on °R and a~ noted above. E can also be

increased by decreasing the variance of the phase , i .e.
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controlling the phase more tightly, or by increasing A.

Both of these approaches can be taken , but both have limits;

for example, a can be made no smaller than zero, and A is

limited by the size of the laser gain medium as well as

other characteristics of the laser.

The simplest way to increase E without changing N , N ,

or L~f is just to collect more pulses. Eq (67) was developed

for the energy of a single period , T~ = 
~~~~~~~. If m pulses are

used, the energy in Eq (67) increases linearly with in, and

and from Eqs (72) and (Ti) are improved accordingly.

This approach is only limited by the number of pulses that

can be received and by the assumption that the target range

and doppler are not changing appreciably during the obser-

- 
- 

vation period (Ref 31:70).

One additional case of interest is that of introducing

some sort of frequency or phase modulation on the signal

s(t). This could be implemented , conceptually at least, by

modulating all of the lasers simultaneously and in the same

manner. A simple case is that of linear frequency modula-

don where

- Sm(t) 
= s(t)exp (jwgt 2) (78)

By a property of ambiguity functions (Ref 31:123; 37:290)
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~~~~~~~~~~~~~~~~~~ 

,
~~

IXm(T~V ) I  (79)

1~0 , elsewhere

This transformation , in effect, shears the old V axis to

V = gT. This will decrease the size of the central peak s

on the T and V axes so that if either range or doppler is

known, the other may be determined with better precision

than before. However , for the coupled case, the Cramer-Rao

lower bounds are increased as shown in Ref 31:73-74 and

37 :298. Hence a simple linear modulation is not helpful to

the coupled measurement case. Much more complex modulations 
—

such as pulse coding (Ref 37:314-323) may be more useful,

but their implementation for N lasers would probably be

very difficult.
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IV. Linear Array

The mean far field for a planar array of lasers was

given by Eq (44). This equation cannot be reduced to a

convenient closed form for the general case. It can be

solved numerically for a given set of Aik, 
~~k’ 

0ik’ and

a
~k, 

but some simplif ying assumptions are needed before

any further analysis is possible. The first such assumption

that will be used throughout this section is that the array

will be considered one dimensional, i.e. a linear array.

MOst of the results can be extended to two or more dimen-

sions if desired , and , in fac t , one special case of a

planar array will be considered. Nevertheless , the impor-

tant results can be demonstrated with a linear array . The

second assumption used in this section is that the locations

of the lasers are precisely known . Therefore, Eq (50) can

be rewritten for aD = 0 as,

E(IJ (x ,y, t))

A~exp [~
[2-irf~t + 

2ir D~x 1 + e i)) (80)

2wD.x
Because of the Az 

1 term in the exponent, this mean field

- has a spatial modulation within the overall - gaussian envelope

described by P( x ,y)U 5 (x ,y). The performance measures

- 

- 

in this section will deal with the characteristics of this

spatial modulation in terms of N, ~~~ ~~ and 6~ and , for

certain applications , will consider peak-to-side lobe ratios .
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Pattern Characteristics 
-

In order to maintain the pulsed nature of the signal

used in the coaxial case , the first assumption used here is

that f~ = i~if; other cases will be discussed later. In

addition, O~ is a simple phase shift that merely determines

an absolute reference for either the time or space coordi-

nates. Hence, with no loss in generality , it can be

assumed to be zero . An interesting use for will be

discussed later.

Scanning. For uniform aperture excitations (A~ = A)

and considering a uniform array where D~ iD , Eq (80)

becomes

E(U1 (x1 ,y1 ,t)) = P(x1~ Y1 )U 15 (x 1~ Y1 )AexPf_c + ~~~~~

I Dx~~
- 2-irDx sin NirIt~ft + ~~~(2w

~
ft+PA 

~ i~~
) (81)

Z1 sin 71 [Aft  + .~_LJ

As before , the exponential factor indicates a shift  of the

optical frequency to ~~~~~~~~~~~ but it also indicates that

there is now a spatial frequency because of the 2-irDx1 term.
AZ 1

The ratio of sinusoids in Eq (81) can be written as a

function of ~ ( k x 1+wt) where k’ ~~[~~L) 
and u)=21rL~f. This

is the standard form of a classical travelling wave whose

profile is given at t = 0, temporal period is ~~ phase

velocity is ~~~~.,  and spatial p eriod is ~~~~~~~. Therefore,

- 
- - 
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Temporal per iod = T~ ~-~L = sec (Eq (33))

Temporal pulse width t~, ~~~~~~~~~ sec (Eq ( 32 ))

~ fA z
Phase velocity = = D 

‘ 
- - (82)

Sp atial period = X~, = 
~~~~~~ 

= —
~~~--~- m

- 2Az
Spatial pulse width x~ = ND m

The spatial beam profile at t = 0 is identical (within a

scaling constant) to the temporal profile at x1 = 0 as

shown in Fig. 4. - Therefore , in addition to the temporal

pulse train, there is now a spatial pulse train scanning

linearly in x 1 at a rate of ~~~~~~ 
= t~f Hz. This still occurs

p
beneath the gaussian envelope. From Eq (39), for A

2 1 = 1 kin , and w = 1 mm , the waist at z1 is about 3.5 m.

The beam width is equivalent to x~, which for an array dimen-

sion ND = 1 m is about 2 cm. For D = 1 cm (this would be

for an array of 100 lasers spaced 1 cm apart), the spatial

- period is about 1 m. The result is illustrated in Fig . 8.

The small beams measured by ~~ will move right or left

(depending on whether f~ i~f or (N - i)i~f., i.e. whether

the frequency offsets step “up” the array or “down” the

array) at a speed of 
~j~~

- and the pattern will repeat

every sec. Unfortunately, ~~ places more stringent

restrictions on the misalignment angles of the laser optical
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axes as shown by Eq (54). Now the maximum o~ should be on

the order of -~~~~ or about l0~~ rad. This is two orders of

magnitude more restrictive than the 10’ rad for the coaxial

case.

This is a useful result for a system that does not

require resolution of close targets in azimuth to less than

abou t w 1 and does require multiple target returns (for

example to reduce glint or other transient phenomena).

Unfortunately, it also complicates the ambiguity problem

as there is no way to distinguish which beam, ~~ is pro-

viding the return. Therefore, the resolution capability

inherent in the small ~~ is being wasted. These side

lobes away from the x. = 0 peak are called “grating lobes”

- ‘C -w
1

~~xp
I- .

~
• -

~
-•~~ I p

- ~f Az 1 ~
~ D sec

/~/ \ Gaussian
/ Envelope

-

: -
~~~

- 
- meters

Fi g. 8. Example of Far Field Mean Beam Pattern
for N=100, D=1 cm , z,=l km.
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in radar theory . It can be shown that these lobes do not

exist if D4 (Ref 35:90) which is impossible at optical

wavelengths. Eqs (39) and (82) suggest two possible solu-

tions. If the waist , w1, - could be made sufficiently small

(<X
v

) then the gaussian envelope could be made to attenuate

unwanted lobes . From Eq (39) the only way to do this is to

increase w. For significant attenuation of the first side

lobes, w, , therefore w ~~ ~~~~~
- . This is not desirable

since originally the laser aperture radius was chosen to

be to minimize diffraction effects and maximize power

transmission. Hence the aperture radius must-be at least

on the order of the aperture separation , and the apertures

overlap . Eq (82) indicates that X~ can be increased by

decreasing D and similar results are obtained , i.e. the

apertures overlap . Thus for D4, there is only one other

way to eliminate the grating lobes and that is to use an

aperiodic array , i.e. D~,&iD. This case will be discussed

at the end of this section.

Pattern Shape. So far the amplitudes , ~~ of the

lasers have been assumed to be equal and the result has
sin Nxbeen a 
~~~~ 

pattern in space , Eq (81). It is useful - to

pursue a slightly different analysis of Eq (80) for two

reasons: 1) more flexibility may be obtained if the A
~ 
are

not all the same, and 2) the side lobe structure of Eq (81)

may not- be desirable. In Eq (81), the first side lobe is

the highest. Fig. 9 shows the peak-to-first-side lobe

ratio as a function of N. Therefore , even as the number
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Fig. 9. Peak-to--First-Side Lobe Ratio versus
N for sin(Nx)/sin(x).

of lasers increases, after N 20 the highest side lobe

grows linearly with the peak. 
-

If Eq (80). is rewritt€~-i for f~ = it~f, D~ = iD, and

iO the result is

E[U (x ,y, -t)) = P(x
1 ,y 1

)U,5(x,,y,)exp [_çJ~ Ajz
i (83)

where 
-

27rDx
z = exP

[
~ (2~r~ft + Az’ + e)) (84)

and the series in Eq (83) can be written 
-

EA~z~ = AN 1 ~~ (z-z.) - (85)
i 

_
i 1

which is just a polynomial in z (Ref 35:87). Eq (84) is

referred to in antenna theory as a z transform. (For a

• more general discussion of antenna theory , see , for example ,

Ref 5; properties of z transforms and their uses may be

found in Ref 25:45-77 and 35:87-111.) Now, Eq (84) can be

written

63. 
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z = exP
[i [~~JD [~~ 

+ ~~~~~ + ~}JJ
- 

= exp j 
(~ L}D[~

J~ - sin (86)

x
where ~~ in the far field approximation is the angle ofzi
observation with respect to the z axis (optical axis) and

0 0 represents the angle at which the “main lobe” is point-

ing (Ref 35:89) as shown in Fig. 10.

x x l

- 
- D

= Lasers

Fig. 10. Geometry of Linear Array and Far Field

Of course, Isin 0~~ cannot be greater than 1 so that values

of [~-~yJ-~ + that are greater than 1 essentially repre-

sent beam angles outside of the “visible” region. In fact,

+ 2~
-
~) may be considered modulo 2ir , i. e.

2nn + sin O
~ 

where n = 0, ±1, ±2 , . . .  and Isin e 0 1 ~ 1
(Ref 35:89). Therefore, in Eq (86) the main beam location

is a function of time as was shown by Eq (82) . It is now

possible to choose the zeroes and amp litude weightings of the

polynomial in Eq (85) to yield desirable beam width or

side lobe properties (see , for example , Ref 30 , 36 , and

- 62 - - 
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Ref 35:95-110). The array can , in fact, be designed so

that the side lobes are always below a given design value

(which can be made much lower- than the results in Fig. 9)

for a given main beam width (this is called a Chebyshev

array ; Ref 35:111-118). Thus, with this approach the side

lobes may be better controlled , however , there are still

grating lobes because D4. -

It is interesting to note that by duality similar

results can be obtained for the temporal pulse train rep-

resented by Eq (31). In this case, for x1 = 0, the zeroes

of Eq (85) may be chosen so that -the temporal side lobes

are controlled in a desired manner. Presumably appropriate

and A~ could be chosen to control the temporal and

spatial side lobes simultaneously.

Monochromatic Beam

The z transforms also indicate another interesting

possibility . If in Eq (86), ~f = 0 , then the beam position

is not a function of time; it is only a function of 0.

This represents the case of a continuous wave resultant

beam where -all N lasers are oscillating at the same fre-

quency, f0 , and are being added coherently with a control-

lable phase offset, 0, across the array. This case is

very similar to the phased array in antenna theory.

Beam Steering. For t~f 0, Eq (86) becomes

z = exP
[
~ [~!L)D(~

i - 0
0)) 

(87)

- - - - 
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where -0 
~~~~~~~~~ 

since 0 is small. 
- 
For the linear array ,

then, the main beam may be pointed anywhere within the

gaussian envelope by proper choice of 0. (Of course,

because of the grating lobes, one “main beam” is indis-

tinguishable from its neighbor and in fact all of the lobes

move simultaneously with 0. Nevertheless a “main beam”

is referred to for convenience.) If desired , the main beam

may be made to scan sinusoidally for

AG
2i~D

= rsin 2rrf5t

0 = sin 2irf8t (88)

where r is a scale factor that determines the limits of the

scan disp lacement and f~ is the sinusoidal scan rate. Two

such arrays arranged orthogonally would provide two sets of

pencil beams that scan orthogonally. Such a system could

be used for tracking a target.

Planar Array. For the special case of f~ = t~f = 0,

Aik = A , aik = a, Djk = D , and dik = d, Eq (44) may be

written as

E(U 1 (x 1 ,y 1 , t ))  = P(x
1~
y,)U1~~

(x1~ Y1)Aexp [_c)zz 

(89
- 

exp [i ~~~ 
~~~~~~~~~ +j O j k)

Now, if 0ik = + ka~~ Eq (89) becomes “separable”,

- - - 
- 
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E(U (x ,y, t)) = P(x,,y,)U,5(x1 ,y1
)Aexp (_~~-)~~

exp [ji(~~~)D(~.ii-~
.
~~))

exp[jk(~~)d(~ 1f~~~~) 
(90)

In spherical coordinates , x = z siiupcos~ and y =

z,sini~sin~ where i~~ is the angle off of the normal to the

array and ~ is the angle in the plane of the array (Fig. 11).

The result is the same as in Ref 10:36 (see also Ref

5:141-142, 172-173). Therefore, for a symmetric distribu-

tion of lasers around the center of the array and with a

e
- 1

Direction of

- 
Main Beam 

I .~~~~~
- 

~~ zI ~ o z1

Fig. 11. Geometry of Planar Array and Far Field

laser at the center of the array (i.e. an odd number of

lasers in both rows and columns which would require at
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least 9 lasers) the pointing angle of the main beam is at

where (Ref 10:38) 
—

tan i = ~~~~~~~~~~~~ (91)
0 a~ -

sin2 [ A )

2
(a

2 

_j
~_) (92)

A conical scan is useful for tracking applications . In

— terms of 
~
p ,  a conical scan would require a constant i~~

— and a 
~ 

that increases linearly with time. If D = d,

then 
-

ax 
= rcos 2-iif5t -

- 

~93)

- - 

- ay = rsin

will produce a conical scan at a rate of f5. For this

case, i~~ sin~
1 and r = 2-irf5t. Because of the grating

lobes, the resulting scan in the x , y plane will look like

a series of concentric circles with amplitudes determined by

the overall gaussian envelope.

-Aperiodic Arrays

As noted earlier , the grating lobes may not be objec-

tionable depending on the application. However, they must

be removed to obtain the resolution inherent in ~~ and to

eliminate ambiguities in target location due to the numerous

lobes. The most feasible way to remove them is to use an

aperiodic array where D~#iD. The analysis here is similar

to radar antenna theory (Ref 5, 30 , 35) except that the
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wavelengths are much shorter. In general , aperiodic arrays

can be designed with the element spacings chosen according

to an algorithm or chosen in a completely random manner .

The statistics for an ensemble of random array configura-

tions lead to various descriptions of the far field beam

pattern. Both types of aperiodic arrays are discussed

briefly with general results drawn from antenna theory and

applied to the laser case.

Spatial Taper. Unfortunately there is no general theory

governing the design of aperiodic arrays. Several techniques

are listed in Ref 35:135; the most successful of which is

apparently a process called dynamic programming which is a

sophisticated trial-and-error procedure. Iterative methods

have also been used to synthesize a desired pattern (Ref 36).

Ref 20 showed that for a linear array , the lowest side lobe

levels were generally from space tapered arrays. Spatial

tapering usually results in an array in which the radiating

elements are closely spaced near the center of the array and

become more spread out near the edge of the array. For

example, the element spacings can be made inversely propor-

tional to the aperture excitation (which is considered

continuous over the entire array aperture) (Ref 35:126-129).

The result is a radiation pattern whose main beam and first

cQuple of side lobes approximate the design goals fairly

closely. However, the side lobes tend to get higher for

angles further from the main beam (Ref 35:130). Fig. 12 on

the next page is a representation of the radiation pattern
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Fig. 12. Representation of Typical Space Tapered
Array Pattern (Adapted from Ref 35:130).

for a typical spatially tapered array. Region I approxi-

mates the design goals with low side lobes. Region II is

a transition region where the side lobes get higher.

Region III has average side lobe levels similar to the

results for random arrays. If the pattern in Regions II

and III will not be used, then perhaps spatial tapering can

eliminate the grating lobe problem. In the case of optical

frequencies, this might be true because the overall gaussian

envelope severely attenuates the pattern away from the main

beam. For example, at a distance of 4w from x = 0, the

gaussian profile is about 36 db down from the peak at x = 0.

Unfortunately, because of the small wavelength involved ,

Region III occurs much closer to the main beam than for the

radio frequency case. In fact, for most spatial tapers , the

design pattern approaches the Region III results by the first S

- side lobe (Ref 35:150). Since the location of the first side

lobe is proportional to where L is the overall length of

68

________ - -~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
- -- --rn - -- - --~~--



-i

the array, the gaussian envelope, will not be selective

enough in the neighborhood of the main beam to kill off the

high side lobes in Regions II and III.

Random Arrays. Strictly speaking there is no such

thing as a random array since any physical array is

completely deterministic (not including measurement errors).

This seems to imply that to determine anything about the

far field pattern of an infinitely large class of specific

array configurations, one must realize each array and com-

pute its pattern . Fortunately this is not the case. It is

possible to make certain probabilistic statements that are

valid for such a class of arrays whose elements may be

positioned in some random manner . Such statements , though,

are merely existence statements or bounds in that, within

the class of arrays being considered , at least some array 
—

configurations exist whose patterns are described by these

probabilistic - ttatements. This approach is absolutely no

help at all ir, realizing a specific array with the desired

characteristics. Such a realization must be left to a

computer or a designer ’s insight. Nevertheless , it is

useful to review the results of random array analysis

(Ref 19 , 20 , 30, 35). -

Eq (50) was the result for the general one dimensional

~~~ir arr iy w~ . 
~
- ‘ ~~~~~~~(t )  and D were considered gaussian

- 

~h1en W)wn (r ons i-i .-iirl g the far field pattern ,

- 1~ irb it- rary and will be set to

-
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E(U (x1 ,y,t)) 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2wD.x
A
~

exp i Az 1 
(94)

where the D~ are the means of the element locations , and

G
D 

is their variance (since they are considered to have

identical variances). If the array is uniform (D1 = iD),

the series in Eq (94) has the spatial grating lobes shown

in Fig. -8. It can be seen imn~ediate1y that for x ~ 0, G
D

2

can be appropriately chosen to attenuate the grating lobes.

In Eq (51), aD was chosen small so that the far field

pattern was not significantly affected; here, however ,

[21T~~~a~) must be relatively large to accomplish the

desired result. In a manner completely analagous to the

temporal results of Eqs (34) and (35), the mean far field

intensit
~

.r is proportional to N for x ~ 0 since

x
sin Nir D~~L 2

E(Ii)~~fl_
exp[{

27r
~~~

)2 
z)]
N + exp~2~r~~i_)2 a

D)[ 
(95)

where A~ = A and D~ = iD in Eq (94). At x = 0, however,

the main beam peak is proportional to N2 . Therefore, the

power ratio of the average side lobe level to the main beam

peak is j~z- 
= ~~~, so that the average side lobe level is

- inversely proportional to the number of lasers in the array

(Ref 35:140-142). -
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There is still, however , a finite probability that

some side lobe will be much higher than the average side

lobe level of ~~~~. This Is true since the far field pattern

of any given array is simply one possible sample function

of all of those under consideration , and any individual

sample function may have very high or very low side lobes.

Eq (94) indicates that the mean of U can be made to atten-

uate the grating lobes for x~~0 as much as desired. The

field , however, may deviate from this mean by a considerable

amount. - To investigate this deviation a new definition is

used so that the field under consideration is zero mean

and unit variance

U (x ,y ,t) - E(U (x ,y ,t))
U~(x ,y ,t) = 1 1 1 1 1 l (96)

1 1 1 ‘Var (U ,U * J

In general, U is a complex random process with real and

imaginary parts . For a large number of elements , these

parts may be considered asymptotically jointly gaussian

random processes by the central limit theorem (Ref 19:258;

35:147). With this assumption , the joint probability

density of the real and imaginary parts of the field U is

known , and the probability that any side lobe (a given

amplitude of the field) will not exceed some specified

threshold can be determined . (This is not the- same as the

assumption that was made earlier that only the statistics

of the phase were known and that the amplitude was deter-

ministic . In this case , both the amplitude and phase of
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the far field U are considered random for this class of
1

arrays since the elements may have locations determined by

some unspecified probability density:) Since U is zero

mean, its real and imaginary parts are identically distri-

buted as well as independent. This is because ,the element

locations are considered to have a common underlying proba-

bility density , so that the element positions are identically

distributed about their means D~ . Now Var (U 1U1*) = N from

Eq (95) since E(I ) = E(U U *) = Var(U U *) and aD
2 is big

enough. Following Ref 19:261 and 35:147-151, the result is

as follows : 
-

A A
Pr I U I > — ~- = 1~Pr jU~~~<~~±1 1

~~~~~~~

- Pr[(U 12 > 

~~~~~~ ) 

= ex~
[
~~~

J

Pr [IT.r12 > 
B) exp(-B) (97)

A 2
where B = -

~~~~~ 

is the power ratio of the desired threshold

to the average side lobe level. The exponential dependence

is. obtained from the exponential distribution of the ampli-

tude of 1 U 1 .  The probability that the peak side lobe is

less than B is just l-e~~ . Eq (97), however , is true for

only a single sample value of IY at some x .  To find the
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probability that no side lobe anywhere in the pattern

exceeds B, it is necessary to take many spatial samples of

U .  The issue now is how many samples should there be and

where should they be. The latter problem is reduced by

simply choosing the distance between samples to be the same.

To make the computations simpler, the number of samples may

be constrained by the requirement that the samples be
— statistically independen t . Crudely, then , the number of

samples needed to describe the random process is a set of

independent random variables. For such a case , the samples

are separated by no less than the coherence distance of the

pattern and the pattern is considered piecewise constant

over a coherence length. The total probability that the

set of {IU (x~)I} is less than B is just the product of the

probabilities that each individual sample is less than B,

B Pr({lU (x~)I2}<B)

= Pr(IU’(x )12 <B and 1U (x2)12 <B and... Iu;(x~
)I2 <B)

= (l-exp(-B))~ 
- 

(98)

where n is the number of samp les and is called the array

parameter . As the coherence distance of the pattern gets

small, n gets large . Eq (98) can be rewritten , -

1
- B = - in 1 - (98a)

Now if the probability (confidence level) ~ is chosen and

n is known , then the peak side lobe level (with respect to

- 73 -
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the average side lobe level; ~),B,can be determined. For

example, for a-90% probability that no side lobe exceeds B

and for n = 10, then B = 4.56, i.e. with 90% confidence ,

the peak side lobe of 1U 12 is 4.56 times as high as the

average side lobe level, ~~~ . It should be noted, too , that

the underlying distribution of the array element locations

is not a factor in this analysis; this is one of the

reasons why the analysis is general for a large class of

array configurations.

- The determination of the array parameter , n, can be

made in several ways (Ref 35:151-156) and the result can be

given by 
- 

-

- n = ~~ (99)

where L is the length of the array . This is intuitively

correct since is roughly the angular lobe width of the

pattern, therefore the necessary “sample rate” should be

proportional to ~~~~. For optical wavelengths, then,

(particularly for CO lasers)n is on the order of l0~ . The

- 
effects on n of a main beam at some location other than

x = 0, unequal element excitations , non-isotropic elements ,

and signal bandwidth are all negligible (to within an order

of magnitude) for this case (Ref 35:171-184).

Eq (98) overlooked a minor problem. Since B itself

has a variance and the samples are not infinitely close

together (continuous )~ the actual peak side lobe is higher

than B with probability one , i.e. W may not be piecewise
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constant over a coherence distance. Ref 19 ignores the

error and Ref 35 presents a rather obtuse derivation of

an additive correction factor which turns out to be 1 + ~~~,

so that the actual peak side lobe is given by B + 1 +

For the optical wavelengths , the correction factor is neg-

ligible, since n = l0~ and Eq (98a) gives B ~ 12 (for a

confidence level of 50%) and B 14 (for ~ = 907~). Thus,

the correction affects the actual peak side lobe less than

about 10% numerically, and in fact merely represents a

small decrease in the confidence level ~~~ . Since B is the -

ratio of the peak side lobe to the average side lobe, the

ratio of the peak side lobe to the main beam is given by

1
= - in l - f 3 ’~ (100)

The pr~i.mary restriction on Eq (100) results from the

original assumption that the field U~ had real and imaginary

parts that were asymptotically jointly gaussian. Ref 19:262

notes that this approximation is valid for ~~i~~~-~ - <-< 1. A plot

of N versus h is given in Fig. 13 for q = 1,5 where L =

and B = 907~. The restriction ~~~~~~
-

~
- << 1 is shown by .a dotted

line . Left of this line , the confidence level may be less

than 90~ . The figure is very nearly the same as that in

Ref 19:262. The fi gure indicates that as L(q) increases ,

the peak side lobe is also likely to increase , but not a

great deal relatively.
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Fig. 13. Peak Side Lobe Level Versus N.

Fig. 13 also indicates a very striking result. For a

reasonable peak side lobe level of -20 db, a 1 m array (q~5)

must consist of about 1400 lasers. As noted earlier, these

probability statements are existence statements for an

infinitely large class of arrays whose elements are positioned

according to some underlying probability density. Therefore,

there are at least some arrays which have about 1400 lasers

whose side lobes are less than -20 db with a confidence level

of about 90%. This is not true for most of the arrays in the

class. Furthermore , this is not a design procedure for a

specific array. Finding an array with the above performance

is by no means a trivial task (analytically , it is totally

intractable). However, even disregarding the difficulty of
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designing the appropriate array , there is the not inconsid-

erable problem of actually building it.

I 
-
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V. - Conclusion

- ‘Summary of Results

In the first section , classical , amplitude stabilized

fields were used to describe ‘the laser output. The fields

were considered complex, coherence separable random processes.

The Huyge~ts-Fresnel principle was used to propagate the field ,

and the far field (Fraunhofer condition) was considered. The

general result for the superposition of N fields contained

all of the cases discussed , and the time-space duality of the

calculations was evident. When coherent detection was used

to measure a field at any space-time point , the resulting

measured phases-of the fields were considered stationary ,

gaussian random processes. The effect on the far field pat-

tern was an amplitude reduction proportional to the variance

of the phase. As the variance increased, the result approach-

ed the incoherent case; and as the variance approached zero,

thc ficl~~ we~~ ~~en to add coherently. A phase locked loop

was postulated to lock each laser to a reference. A local

oscillator could be used in a coherent (heterodyne) detector,

and a phase locked ioop could lock the reference to the

local oscillator. The receiver then could track the signal

• without regard to the absolute phase variations of the sig-

nal or the local oscillator . Three cases of misalignment

were considered. Variations in laser spacing produced

results similar to the effect of the phase variance . In

each case the required standard deviation for a desired —

effect on the far field was determined. Misalignment of the
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laser axes was also considered and found to require alignment

accuracy to within milliradians for the coaxial case. One

other problem investigat ed was that of the misalignment of

the fields in the direction of propagation . This was seen

to produce a non-negligible phase variation in the far field

that required physical alignment of the lasers to within an

optical wavelength to eliminate the variation. The sta-

tistics resulted in another amplitude reduction of the far

field proportional to the variance of the misalignment.

A f ew , minor , simplifying assumptions in the first sec.-

tion produced a far field result almost identical to that of

a mode-locked laser. However , there was additional flexi-

bility in that the pulse widths and pulse rates could be

easily varied by changing the frequencies of the individual

lasers. The minimum pulse width was determined to be about

3 nsec using CO2 waveguide lasers . A laser array also pro-

duced spatial modulation. In both cases the overall beam

propagated as a gaussian spherical wave.

In the second section , the case of several lasers whose

- 
- 

optical axes were coincident was considered in more detail.

For the reasonable assumptions of coherent detect-ion and a

matched filter receiver , the performance of the mean of the

far field was seen to be described in terms of the ambiguity

function. The general characteristics of the ambiguity

function depended essentially on the total bandwidth of the

combined field. Thus using other than a constant frequency

interval ~f would not be significantly help ful . The

79 . 

-

_  _ _ _ _  T~~~4

~

--- - - ---- ---—- - - - -- --- -- -



~~~_- - yw ~ur ’Tr ‘-~~T T ~~ii ~~~~~~ ru ,~~T 
- - - 

- 

-

measurement precisions for range and velocity were found to
1 _____

be proportional to /c~3~ f and ‘N1~f~ respectively. Therefore,

in theory , the measurement precisions could almost independ-

ently be made as small as desired within the constraint that

Nt~f must be less than or equal to the laser gain line width.

Multiple pulses could also be used to increase the signal —

energy to noise ratio thus improving both measurements.

Overall modulation such as linear frequency modulation (chirp)

was not seen to be particularly useful in improving measure-

ment precision. This coaxial case does have application to-

target detection and tracking problems as well- as terrain

mapping . The system is very flexible because of the capa-

bility to change pulse characteristics , thus changing meas-

urement precision when necessary .

In the third section , the case of an array of lasers

was considered. A linear array was analyzed and found to

have a spatial pulse that scanned linearly beneath the over-

all gaussian envelope. This spatial pulse was seen to

require about two orders of magnitude improvement in the

alignment accuracy of the optical axes of the lasers, i.e. on

the order of lO~~ rad. By the use of z transforms, the side

lobes of the spatial pulse could be controlled in any desired

manner . For the monochromatic case (Af=0) , the spatial beam

could be made to scan sinusoidally and a planar array was

seen to permit conical scanning. These results make the

system applicable to target tracking and even track-while- -

scan since the beams ’ relative phases can be changed
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electronically . For some applications, however , the second-

ary spatial beams, called grating lobes, are undesirable, so

the cases of aperiodic and random arrays were considered

briefly. Of the aperiodic arrays, the spatial taper was

found to provide some of the lowest side lobes , but for op-

tical wavelengths the beam pa-:~tern away from the main peak

became less controllable. The class of arrays - with element

locations determined in a random manner from array to array

was found to have a ratio of average side lobe intensity to

peak intensity inversely proportional to the number of

lasers. Furthermore, to obtain a reasonably high probability

of low side lobes (i.e. no grating lobes), the array was

found to require a large number of lasers (>1000) . Although

this was noted to be true in general for the class of random

arrays, the results only guaranteed that a desirable array

existed and did not in any way specify the array.

Recommendations

It is very difficult at this point to make specific

recommendations as to what type of system should be built ,

how many lasers it should use, what frequencies it should

operate at , and so on. The difficulty arises because as is

usually the case , none of the issues are clear enough to

enable instant conclusions to be drawn. As always , there

are trade-offs necessary between system requirements , design

constraints , and costs . The difficulty becomes even more

acute when the applications are generalized as they are here ,
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and when there are no systems against which point by point

comparisons may be made . Nevertheless , some general comments

may be made . The statiätical models used indicate that

given a good phase locked loop design for heterodyne detec-

tion, the fields may be combined and detected coherently.

Misalignment problems in the plane of the array and in optic

axis angle , though difficult, also seem to be within the

realm of engineering solutions. The waist alignment problem

(in the direction of propagation) is much more serious and

may represent the most serious, stumbling block to implement-

ing coherent combination of two or more lasers. The flexi-

bility of such a system is desirable for ranging applications

and possibly for velocity measurements as well since the

pulse format may be changed easily. This would indicate,

however , that more than two or a few lasers be used (exactly

how many more depends on the system requirements) since the

measurement precision for coupled measurements may be more

easily manipulated for N>2. The coaxial case requires some

sort of combination scheme, however , which may be lossy

as well as expensive . A linear array may find application in

cases where beam scanning or pointing is necessary . However,

unless it is possible to build arrays of more than several

hundred lasers within a length of a few meters or less , the

multiple lobe problem cannot be eliminated. This will cer-

tainly restrict the application of such a system even though

the high resolution of the coherent result (~ cm) may be

desirable . 
-
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There are several areas in which further investigation

would be helpful and in which hardware development should be

emphasized. The duality issue should be considered more

carefully. It appears that not only could more results be

obtained, but a great deal of spatial statistics from antenna

theory could be applied to the temporal realm. As far as the

spatial beam is concerned , there should be further study of

the spatial taper case for the optical wavelengths . Either

a general theory could be developed or the approach could be

shown conclusively to be of little value. Computers would

be helpful in determining actual patterns for various arrays

to see if there are any useful trends. For the random case,

the statistics should be examined more closely to produce

more rigorous results. Another interesting possibility is

that of developing a measure of the probability that an

objectionably high side lobe will occur within a certain

region near the main beam . Another area is that of signal

design. Some of the performance criteria presented in this

study are basic and could be expanded. Signal synthesis

would also open up the whole area of applications to communi-

cations that were not considered here. It seems .that the

coherent combination of lasers would have enough more flexi-

bility than a mode-locked laser to be useful in conununica-

tions. The spatial scanning aspects of the array could also

be helpful in, perhaps , selecting various receivers for

various messages, i.e. in addition to frequency and time

division multiplexing , spatial multiplexing could be useful.
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Coherent combination of lasers, although a formidable
engineering task, still offers sonie attractive benefits .

Development of arrays of small laser s with power outputs of

watts or milliwatts should be encouraged. Laser alignment

is enough of a problem that it is desirable to obtain more

lasers and more power per laser in a given array. Other

hardware problems that must be addressed include the physical

aspects of putting a large number of lasers together in a

small array with the associated cooling , control electronics ,

and optics.
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